DR SAMANTHA S STUTZ (Orcid ID: 0000-0002-3999-9726) PROF. DAVID T HANSON (Orcid ID: 0000-0003-0964-9335) Article type : Regular Manuscript # WHAT IS THE FATE OF XYLEM-TRANSPORTED CO2 IN KRANZ-TYPE C4 PLANTS? Authors: Samantha S. Stutz^{1, 2}, David T. Hanson¹ ¹Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA ²Present address: Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA Author for correspondence: Samantha S. Stutz ORCID id: 0000-0002-3999-9726 David T. Hanson ORCID id: 0000-0003-0964-9335 Telephone: +1 (505) 690-2609 Email: samstutz@illinois.edu Received: 6 August 2018 Accepted: 24 March 2019 This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/nph.15908 ### **SUMMARY** - High concentrations of dissolved inorganic carbon in stems of herbaceous and woody C₃ plants exit leaves in the dark. In the light, C₃ species use a small portion of xylem-transported CO₂ for leaf photosynthesis. However, it is unknown if xylemtransported CO₂ will exit leaves in the dark or be used for photosynthesis in the light in Kranz-type C₄ plants. - Cut leaves of Amaranthus hypochondriacus were placed in one of three solutions of [NaH¹³CO₃] dissolved in KCl water to measure the efflux of xylem-transported CO₂ exiting the leaf in the dark or rates of assimilation of xylem-transported CO₂* in the light, in real-time, using a tunable diode laser absorption spectroscope. - In the dark, the efflux of xylem-transported CO₂ increased with increasing rates of transpiration and [¹³CO₂*]; however, rates of ¹³C_{efflux} in *A. hypochondriacus* were lower compared to C₃ species. In the light, *A. hypochondriacus* fixed nearly 75% of the xylem-transported CO₂ supplied to the leaf. - Kranz anatomy and biochemistry likely influence the efflux of xylem-transported CO₂ out of cut leaves of *A. hypochondriacus* in the dark, as well as the use of xylem-transported CO₂* for photosynthesis in the light. Thus increasing the carbon use efficiency of Kranz-type C₄ species over C₃ species. Keywords: *Amaranthus hypochondriacus*, CO₂ efflux, C₄ photosynthesis, internally transported CO₂, Kranz anatomy, tunable diode laser absorption spectroscopy, xylemtransported CO₂ ### INTRODUCTION In Kranz-type C_4 species, vascular bundles in the leaves are surrounded by bundle-sheath cells, which in turn are surrounded by mesophyll cells (Sage, 2004). Kranz anatomy allows C_4 species to compartmentalize and concentrate CO_2 around ribulose-1,5- bisphosphate- carboxylase/oxygenase (Rubisco), in the bundle-sheath cells, while isolating phosphoenolpyruvate carboxylase (PEPC), to the mesophyll cells (Hatch, 1987), thus reducing rates of photorespiration by Rubisco and increasing rates of photosynthesis (Hatch, 1987; von Caemmerer & Furbank, 1999). However, there is an energetic cost of regenerating phosphoenolpyruvate (PEP) (Hatch, 1987; Kanai & Edwards, 1999; Ubierna et al., 2011), which is required to shuttle CO_2 from the mesophyll cells into the bundle-sheath cells as C₄ acids (Hatch et al., 1967). In order for Kranz-type C₄ plants to reduce the energetic cost of regenerating PEP, they must have high bundle-sheath resistance to CO₂ diffusion, or low leakiness (ϕ). Leakiness is the proportion of carbon fixed by PEPC that subsequently diffuses out of the bundle-sheath cells instead of being fixed by Rubisco (Farquhar, 1983; Hatch et al., 1995). In Kranz-type C₄ species, CO₂ diffuses through the stomata and then into mesophyll cells where it is equilibrated with HCO₃ by carbonic anhydrase (CA). There it is assimilated by PEPC and transported as C4 acids into the bundlesheath cells for decarboxylation and utilization by Rubisco (Hatch et al., 1967). However, studies in C₃ species show that inorganic carbon can also be transported through the xylem and used for photosynthesis by stems (Teskey et al., 2008; Bloemen et al., 2013a), branches (McGuire et al., 2009; Bloemen et al., 2013a, b), and leaves (Stringer & Kimmerer, 1993; McGuire et al., 2009; Bloemen et al., 2013a, b; Bloemen et al., 2015; Stutz & Hanson, 2019). Concentrations of dissolved inorganic carbon ($[CO_2^*]$, the sum of $[CO_2]_{aq}$, $[H_2CO_3]$, $[HCO_3^-]$ and $[CO_3^2^-]$) in the stems of C_3 trees can be between ~0.05 mmol Γ^1 and ~13 mmol Γ^1 (Teskey *et al.*, 2008). This inorganic carbon is generated from cellular respiration and dissolves in the xylem and moves in bulk flow along with water through the plant to the leaf where it is either used for photosynthesis (Stringer & Kimmerer, 1993; Teskey & McGuire, 2002; Teskey *et al.*, 2008; Bloemen *et al.*, 2013a, b; Bloemen *et al.*, 2015; Stutz & Hanson, 2019) or exits via transpiration (Stringer & Kimmerer, 1993; Bloemen *et al.*, 2013a; Stutz *et al.*, 2017). However, it is not just trees that have high $[CO_2]$ in stems, Stutz *et al.* (2017) found $[CO_2]$ in bolted stems of the herbaceous C_3 , *Brassica napus* were 0.7 mmol Γ^1 , showing that xylem-transported CO_2^* (the sum of $[CO_2]_{aq}$, $[H_2CO_3]$, $[HCO_3^-]$ and $[CO_3^{2-}]$) is also concentrated in stems of herbaceous C_3 plants. In *Populus deltoides* the efflux of xylem-transported CO_2 out of branches and stems of labeled saplings ranges from 82.6% in a low-label treatment (1.4 mmol I^{-1} [$^{13}CO_2^*$]) to 94.4% in a high-label treatment (12 mmol I^{-1} [$^{13}CO_2^*$]) (Bloemen *et al.*, 2013a). They demonstrated that most of the uptake was due to photosynthesis in the stem, but that at higher concentrations of xylem-transported CO_2^* , a higher percentage of xylem-transported CO_2 exited the plant, indicating that photosynthesis was unable to keep up with supply and the stem and branch porosity to CO_2 was high enough that the remaining xylem-transported CO_2^* exited the plant before being used. In cut, P. deltoides leaves in the dark ~80% of labeled xylem-transported CO_2 exits the leaf as CO_2 (Stringer & Kimmerer, 1993; Stutz et al., 2017). However, the amount of xylem-transported CO_2 that exited cut leaves of the herbaceous C_3 plant B. napus in the dark were only between 50% and 75% across the range of $\begin{bmatrix} ^{13}CO_2 \end{bmatrix}$ measured (Stutz et al., 2017). This shows that the consumption of xylem-transported CO_2 in the dark varies between C_3 species and was about two times higher in B. napus compared to P. deltoides (Stutz et al., 2017). In C₃ plants, utilization of xylem-transported CO₂ was mostly low compared to the amount of xylem-transported ${\rm CO_2}^*$ available for photosynthesis in the light. Prior work found that over the course of 48 hours, in P. deltoides saplings, only 17.4% and 5.6% of a low- and high-label ¹³CO₂ were assimilated by plant tissues; the highest concentrations of the label were found in the branch and stem tissues while only a small portion was found in the leaf tissues from both treatments (Bloemen et al., 2013a). Spatial variation in rates of xylem-transported CO₂ assimilation on the scale of an individual leaf demonstrated that most of the label was found in the petiole and the tissues most proximal to the label with a small portion found in minor veins and mesophyll cells (Stringer & Kimmerer, 1993; Bloemen et al., 2015). Temporal variation in rates of xylem-transported CO₂* assimilation demonstrated that when intercellular [CO₂] was low (i.e. high irradiance or low [CO₂]), rates of assimilation using xylem-transported ${\rm CO_2}^*$ were highest. However, when the total rate of assimilation was lowest (i.e. low irradiance or low [CO2]), assimilation of xylem-transported CO₂* reached the highest proportion of total assimilation (Stutz & Hanson, 2019). While previous studies have focused on how trees and C₃ herbaceous plants utilize xylemtransported CO₂* for photosynthesis, to our knowledge, no study has focused on the efflux This article is protected by copyright. All rights reserved. of xylem-transported CO_2 from C_4 plants in the dark or how C_4 plants use xylem-transported CO_2^* for photosynthesis. Kranz anatomy may impact the efflux of xylem-transported CO_2 in the dark or influence the use of xylem-transported CO_2^* in the light as a result of one or several possibilities: 1) higher concentrations of PEPC may lead to higher consumption of xylem-transported CO_2^* , when in equilibrium with bicarbonate, in the light, and higher consumption in the dark as it takes 90 to 120 minutes for PEPC to deactivate in the dark in C_4 species compared to C_3 species (Rajagopalan *et al.*, 1993), 2) Kranz anatomy may hinder the amount of xylem-transported CO_2 exiting the leaf in the dark compared to C_3 species, and 3) Kranz anatomy may allow C_4 plants to capture more xylem-transported CO_2^* for photosynthesis in the light due to photosynthetic cells tightly surrounding the vascular-bundles. Therefore, the objectives of this study were to estimate: 1) the rate and total efflux of xylem-transported CO_2 exiting a cut leaf of the Kranz-type C_4 species, *Amaranthus hypochondriacus*, in the dark and 2) the rate and contribution of xylem-transported CO_2^* to total assimilation in the light for *A. hypochondriacus*. These goals were accomplished using a LI-6400 with a custom leaf chamber coupled to a tunable diode laser absorption spectroscope (TDL) to measure how much xylemtransported CO_2 entered a cut leaf and exited the leaf in the dark or was used for photosynthesis in the light using light- and CO_2 -response curves (Stutz *et al.*, 2017; Stutz & Hanson, 2019). We hypothesized that Kranz anatomy found in *A. hypochondriacus* would prohibit much of the xylem-transported CO_2 from exiting cut leaves in the dark. In the light, we hypothesized that Kranz anatomy would prohibit much of the xylem-transported CO_2 from exiting from the leaf in the light thus leading to higher rates of assimilation of xylem-transported CO_2 and reduced rates of CO_2 efflux in the light in *A. hypochondriacus* compared to *B. napus*. ### **MATERIALS & METHODS** # Plant propagation and growth Amaranthus hypochondriacus (L.) was grown under SPYDR 1200 GROW-MAX LED lights (Fluence Bioengineering, Austin, TX, USA) with 500 μmol quanta m⁻² s⁻¹ and a day/night cycle of 12 hours, in a greenhouse at the University of New Mexico in Albuquerque, NM, USA in ambient CO₂. The greenhouse temperature varied between 20°C-23.9°C across a day. *A. hypochondriacus* was started from seed. Seeds were sowed in 500 mL pots with Metro-Mix 300 potting soil (Sun Gro Horticulture, Seba Beach, AB, Canada); approximately 30 days after germination, seedlings were transferred to 3.7 L pots filled with Metro-Mix 300 potting soil. Plants were fertilized twice weekly with Peter 20-20-20 fertilizer (Scotts Miracle-Gro, Marysville, OH, USA) and once weekly with chelated liquid iron (ferti-lome, Bonham, TX, USA). Plants were measured between 50 and 80 days after geminating. *Brassica napus* (L. stellar DH GT060615) was propagated and grown according to Stutz *et al.* (2017). # Dark efflux measurements A LI-6400 (LI-COR Biosciences, Lincoln, NE, USA) was coupled to a tunable diode laser absorption spectroscope (TDL—model TGA 100; Campbell Scientific, Inc., Logan, UT, USA) to measure online $^{12}\text{CO}_2$ and $^{13}\text{CO}_2$ exchange along with online carbon isotope discrimination. Isotope calibration consisted of a high and low CO_2 tank that spanned the expected range of $[\text{CO}_2]$ of each isotopologue for the LI-COR reference and sample (Barbour *et al.*, 2007; Stutz *et al.*, 2017) followed by the LICOR reference and sample. Since the TDL measures $[^{12}\text{CO}_2]$ and $[^{13}\text{CO}_2]$, the net fluxes of each were calculated as in normal gas exchange. The average precision of the TDL was 0.2 μ mol mol $^{-1}$ ± 0.1 SD μ mol mol $^{-1}$ for the ^{12}C isotopologue, 0.004 μ mol mol $^{-1}$ ± 0.002 SD for the ^{13}C isotopologue, and 0.1‰ ± 0.05 SD for $\delta^{13}\text{C}$. The highest fully expanded leaf was placed in a large (80 cm²) clear toped, custom leaf chamber with an RGB LED light source (LI-6400-18; LI-COR Biosciences) attached to a LI-6400 at 25°C (leaf temperature) and 380 µmol mol⁻¹ CO₂ reference with the RGB light source set at 1600 µmol quanta m⁻² s⁻¹. The leaves were photographed, and the projected This article is protected by copyright. All rights reserved. leaf area was estimated using ImageJ (US National Institutes of Health, Bethesda, MD, USA). The leaves fit width-wise in the chamber but extended ~4-7 cm beyond the edge of the chamber. The petiole length was between 5 and 10 cm. Once photosynthesis reached a steady state, the leaf was cut under water and the petiole was placed in a 40 mmol I⁻¹ KCl solution. Stomatal conductance and photosynthesis decreased when the leaf was cut but the leaf was kept in the KCl solution until photosynthesis recovered. The KCl solution was swapped for 99% ¹³C sodium bicarbonate dissolved in 40 mmol I⁻¹ KCl at one of three [¹³CO₂*]: 1.19 (low-carbon—LC), 5.95 (mediumcarbon—MC), or 11.9 mmol l⁻¹ (high-carbon—HC). Individual leaves were only provided a single [13CO₂*] (Stutz et al., 2017). These concentrations span the range of observed values for tree xylem inorganic carbon concentration (CO₂ + HCO₃-). The pH of the KCl/water solution was not controlled and the pH of the ¹³CO₂* solutions are recorded in Tables S1 and S2. Once the NaH¹³CO₃ is dissolved in water, the inorganic carbon is represented by several species $[CO_2]_{aq}$, $[H_2CO_3]$, $[HCO_3^-]$ and $[CO_3^2]$. Only the sum of the species $([CO_2^*])$ provided to the leaf is known since the xylem-sap pH and the activities and locations of enzymes such as carbonic anhydrase (CA) are unknown along the pathways through the leaf. However, similar experiments in C₃ species demonstrated that even when very high concentrations were used, over 90% of the supplied 13 C could exit the leaf as 13 CO₂ (Stutz et al. 2017). Therefore, we assume there is sufficient carbonic anhydrase throughout the leaf to keep inorganic carbon species near equilibrium, and that in the cases where less $^{13}\text{CO}_2$ exits the leaf it is likely the inorganic carbon was captured by a carboxylase. In the HC and MC treatments approximately 8 minutes after adding the 13 CO $_2$ * a small increase in 13 CO $_2$ efflux was observed with the TDL and the light on the LI-6400 was turned off. There was no increase in ¹³CO₂ efflux under the LC treatment so the light was turned off after approximately 10-15 minutes. Throughout the measurement period, the rate of transpiration was manipulated by switching the LI-COR desiccant between full scrub (i.c., high VPD and higher rates of transpiration) and full bypass (i.c., low VPD and lower rates of transpiration). To further increase the relative humidity when the desiccant was on full bypass, a condensing tube in a water bath (VWR Scientific Products, West Chester, PA, USA) was attached to the LI-COR inlet to decrease VPD to 0.5 kPa or less. Each treatment consists of five replicates. # Estimating the consumption rate of xylem-transported CO₂ in the dark The background rate of ¹³CO₂ respiration (¹³C_{RL}) was calculated by multiplying the rate of ¹²C leaf respiration (¹²C_{RL}) by 1.1%, the natural abundance of ¹³CO₂ in the atmosphere and the tank air fed to the leaf (Griffis et al., 2004; Stutz et al., 2017). No adjustment was made for photosynthetic discrimination by C₄ plants since it is small and since the addition of labeled ¹³C in our experiment caused our data to be far from natural abundance. We calculated an expected ¹³C efflux (¹³C_{cal efflux}) that would occur if all the [¹³CO₂*] added to the cut leaf exited the leaf as ¹³CO₂. This was accomplished by multiplying the [¹³CO₂*] in the solution fed to the leaves by the rate of transpiration and adding it to the background ¹³C_{RL}. We used the ratio of observed ¹³CO₂ efflux (¹³C_{efflux}) to ¹³C_{cal efflux} to determine the fraction of supplied ¹³CO₂ exiting the leaf and expressed it as a percentage. We estimated the rate of consumption of xylem-transported CO₂ by taking the difference between the ¹³C_{cal efflux} and observed ¹³C_{efflux}. For these calculations, we assumed the transpiration rate along with the rate of ¹²C and ¹³C effluxes were constant across one TDL/LI-COR cycle *i.c.* 4 minutes. We excluded the first 45 minutes after the light was turned off for these calculations and monitored transpiration until enough water had been transpired for us to assume that all leaf water had been replaced with the ¹³CO₂ * solution that we supplied to the petiole. Data from B. napus were modified from Stutz et al. (2017). ### Light-response curves The highest fully expanded leaf was placed in a clear topped, $38.5 \, \mathrm{cm}^2$, circular custom leaf chamber made to fit an RGB LED light source (LI-COR Biosciences, Lincoln, NE, USA) attached to a LI-6400 at $23^{\circ}\mathrm{C}$ (leaf temperature), $380 \, \mu\mathrm{mol \, mol^{-1} \, CO_2}$ reference at $1600 \, \mu\mathrm{mol \, quanta \, m^{-2} \, s^{-1}}$. Leaves were left in the chamber for approximately 60 minutes before being cut and placed in a 40 mmol Γ^1 KCl solution. As with the dark efflux measurements, the leaf remained in the KCl solution until the rate of photosynthesis recovered and then the KCl solution was swapped for the LC, MC, HC Γ^{13} CO Γ^{*} , or control KCl solution. An individual leaf was only provided a single Γ^{13} CO Γ^{*} . The light response curves were measured in the following order: Γ^{*} 1600, Γ^{*} 1300, Γ^{*} 100, Γ^{*} 50, Γ^{*} 150, Γ except for the highest irradiance where we waited for the $^{13}CO_2$ efflux to level out and averaged the last five measurements. Five replicate leaves were measured for each [$^{13}CO_2^*$] and KCl solutions. The measurements for *B. napus* are described in Stutz & Hanson (2019). ### CO₂-response curves For the CO₂-response curves, the highest fully expanded leaf was placed in the same LI-6400 custom leaf chamber as was used for the light-response curves at 23°C (leaf temperature) at 1600 µmol quanta $m^{-2}s^{-1}$. The CO₂ reference on the LI-6400 was set with the [CO₂] at the leaf level approximately 400 µmol mol⁻¹, which was between 500 and 650 µmol mol⁻¹ CO₂ reference [CO₂] (starting [CO₂]). Leaf-cutting, KCl treatments, and [13 CO₂*] additions were the same as for the light responses. The leaf was left at the starting [CO₂] until the δ^{13} C and [13 CO₂] reading on the TDL stabilized approximately 20 to 30 minutes. The [CO₂] on the LI-6400 reference were applied to the leaf in the following order: starting [CO₂], 200, 100, 50, 150, 300, starting [CO₂], 1000, 2000, 1500, 700 and starting [CO₂]. The light was turned off and leaf respiration was monitored in the dark for at least 30 minutes before using the data, to avoid light enhanced dark respiration (LEDR). Fives leaves from each species were measured for each [13 CO₂*] and the KCl solution. The measurements for *B. napus* are described in Stutz & Hanson (2019). # Estimating the amount of xylem-transported CO_2 entering the cut leaves and rate of consumption of xylem-transported CO_2 in the light The rate of xylem-transported CO₂ consumption in the light in the Kranz-type C₄ species, A. hypochondriacus was calculated as: Consumption in light = Rate of $^{13}CO_2$ entering leaf - $^{13}C_{pred \, light \, efflux}$ (Equation 1) where, the rate of $^{13}CO_2$ entering the leaf is estimated based on the rate of transpiration and the $[^{13}CO_2^*]$ added to the cut leaf and where $^{13}C_{pred \, light \, efflux}$ is the predicted rate of xylem transported CO_2 exiting the leaf in the absence of assimilation and is estimated from linear regression models of xylem CO_2 efflux in the dark (Stutz et al., 2017). # Statistical analyses We used R (version 3.4.2, R Development Core Team 2017) for all statistical analyses. Analysis of covariance (ANCOVA) was used to compare slopes among [13 CO $_2^*$] treatments in *A. hypochondriacus*, followed by Tukey post-hoc multiple comparisons of means to determine which slopes were significantly different among the three treatments. The percentage of xylem-transported CO $_2$ exiting the leaf and the rate of consumption of xylem-transported CO $_2$ were compared between species, *B. napus* and *A. hypochondriacus* and among treatments (LC, MC, and HC) using a two-way analysis of variance (ANOVA) followed by Tukey HSD post-hoc comparisons. For the light- and CO_2 -response curves, we used the lme4 R package (Bates *et al.*, 2012) to perform linear mixed effects analyses of the relationship between our physiological response variables ($^{12}A_{obs}$, $^{13}A_{x}$, photosynthetic discrimination ($\Delta^{13}C$), and consumption of $^{13}CO_2^*$ in the light) and [$^{13}CO_2^*$]. We set [$^{13}CO_2^*$] and irradiance or [CO_2] in the light- and CO_2 -response curves, respectively, as fixed effects. We structured the model to allow for random intercepts for individual leaves. The amount of $^{13}CO_2^*$ (the sum of [CO_2]_{aq}, [CO_2], [CO_2] and [CO_3^*] entering the leaf and consumption in the light were compared to the CO_3^* species, CO_3^* and species were the fixed effects. We structured the model to allow for random intercepts for individual leaves and irradiance, or [CO_2] in the light- and CO_2 -response, respectively. Results were deemed significant at CO_3^* No data were transformed based on the distribution of the residuals. # **RESULTS** ## Retention and magnitude of xylem-transported CO₂ in the dark In the Kranz-type C_4 species, Amaranthus hypochondriacus, rates of xylemtransported CO_2 efflux in the dark ($^{13}C_{efflux}$) increased with increasing rates of transpiration and [$^{13}CO_2^*$] (Fig. 1b). The low-carbon (LC) and high-carbon (HC) treatments were significantly different (P<0.001); however, there were no significant differences between the medium-carbon (MC) and HC treatments (P=0.34), or between the LC and MC treatments (P=0.11). The rate of leaf respiration ($^{12}C_{RL}$) increased slightly with increasing rates of transpiration (Fig. 1a) but was not significantly different across the range of transpiration (P=0.05). Rates of 13 C_{efflux} were lower than the herbaceous C₃ species, B rassica napus whereas rates of transpiration were similar between the two species, (Fig. 1c), in the HC treatment. When transpiration was 0.75 mmol H₂O m⁻² s⁻¹, 12 C_{RL} was $^{\sim}$ 1.5 μ mol CO₂ m⁻² s⁻¹ and was not significantly different among [13 CO₂*] (P=0.09) (Fig. 2b). However, the rate of 13 C_{efflux} increased from $^{\sim}$ 0.018 μ mol CO₂ m⁻² s⁻¹ in the LC treatment to $^{\sim}$ 0.04 μ mol CO₂ m⁻² s⁻¹ in the MC and HC treatments (Fig. 2a); there were no significant differences among rates of 13 C_{efflux} across [13 CO₂*] (P=0.06). # How much xylem-transported CO₂ exited in the leaf in the dark? The amount of ¹³CO₂* (the sum of [CO₂]_{aq}, [H₂CO₃], [HCO₃-] and [CO₃-2-]) that entered the darkened leaf and subsequently exited the leaf as ¹³CO₂ in the dark was calculated 90 minutes after turning off the light for both B. napus and A. hypochondriacus. The percentage of xylem-transported CO₂ exiting the leaf in the dark was significantly different between species (P < 0.001) and among [$^{13}CO_2^*$] (P < 0.001). There were no significant differences in the percentage of xylem-transported CO₂ exiting the leaf in A. hypochondriacus or B. napus in the LC (P=0.93) or MC (P=0.67) treatments; however, the percentage of xylem-transported CO₂ exiting the leaf was significantly different in the HC treatment (P<0.001) (Fig. 3a, b). In A. hypochondriacus, there were no significant differences in the percentage of xylem-transported CO₂ exiting the leaf in the LC (8%), MC (22%), and HC (25%) treatments (P=0.1) (Fig. 3a). In B. napus there was a significant difference in xylem-transported CO₂ exiting the leaf in the LC (15%) and HC (74%) (P<0.001) treatments, along with the MC (33%) and HC treatments (P<0.001); however, there was no significant difference between the LC and MC treatments (P=0.1) (Fig. 3b). The rate of consumption of $^{13}\text{CO}_2^{\ *}$ was significantly different among all $[^{13}\text{CO}_2^{\ *}]$ in A. hypochondriacus (P<0.01) (Fig. 3c) and ~5 times greater than B. napus across all [$^{13}CO_2^*$] (Fig. 3c, d); however, we did not measure what compounds contain labeled ¹³C at the completion of the experiment. # Did xylem-transported CO₂ reach the leaf in the light? In the KCl and LC treatments, photosynthetic discrimination (Δ^{13} C) increased from ~4‰ under high irradiance to ~8‰ and ~5‰ under low irradiance (Fig. 4a). Before placing the cut leaf in the MC or HC treatments Δ^{13} C_{obs} was ~4‰ (data not shown) but after placing the leaf in the [13 CO $_2^*$] solution Δ^{13} C_{obs} was ~49‰ and ~141‰ (Fig. 4c) in the MC and HC treatments, respectively. Based on Δ^{13} C_{obs} in the MC and HC treatments, 13 CO $_2^*$ clearly exited the leaf as 13 CO $_2$; Δ^{13} C_{obs} was significantly different among [13 CO $_2^*$] (P<0.001) and across irradiance (P<0.001). However, there was no significant difference between the KCl and LC treatments across any [CO $_2$] the MC and HC treatments were significantly different from the KCl and LC treatments under non-saturating irradiance (P<0.05) (Fig. 4a, c). In the CO₂-response curves, Δ^{13} C in the KCl and LC treatments were ~4‰ under high [CO₂]; and increased to ~10‰ under the lowest [CO₂] (Fig. 4b). There were no significant differences between the LC and KCl treatments across any intercellular [CO₂] in the CO₂-response curves. As in the light-response curves, photosynthetic discrimination in the MC and HC treatments was ~4‰ before cutting the leaf (data not shown) but increased to ~60‰ in the MC and ~175‰ in the HC treatment (Fig. 4d). The HC treatment was significantly different from the KCl, LC and MC treatments (P<0.001) when intercellular [CO₂] was less than 200 µmol mol⁻¹. # How much xylem-transported ¹³CO₂ entered the leaf? Using the rate of transpiration, and the concentration of $^{13}\text{CO}_2^*$ added to a cut leaf we were able to calculate how much $^{13}\text{CO}_2^*$ entered the leaf in both the herbaceous C_3 species, B. napus, and the C_4 A. hypochondriacus. Rates of $^{13}\text{CO}_2^*$ entering the leaf increased with increasing transpiration and increasing $[^{13}\text{CO}_2^*]$ for both species (Fig. 5). In the light-response curves the highest rates of $^{13}\text{CO}_2^*$ entering the leaf occurred when irradiance and stomatal conductance were high, this also coincided with higher rates of carbon fixation in the light ($^{13}\text{A}_x$) (Fig. 6a, b). In A. hypochondriacus, rates of $^{13}\text{CO}_2^*$ entering the leaf were significantly different among treatments under high irradiance (>500 μ mol quanta m⁻² s⁻¹) (P<0.001) (Fig. 5a). In B. napus, under high irradiance (>800 μ mol quanta m⁻² s⁻¹), there were significant differences among all [$^{13}CO_2^*$] (Fig. 5c). In *A. hypochondriacus* the highest rate of transpiration was ~3.5 mmol H₂O m⁻² s⁻¹ across all [$^{13}CO_2^*$]; however, in *B. napus* the highest rate of transpiration was ~4.5 mmol H₂O m⁻² s⁻¹ allowing more $^{13}CO_2^*$ to enter the cut leaves of *B. napus* compared to *A. hypochondriacus*. The amount of $^{13}CO_2^*$ entering the cut leaves was significantly different between the species in the MC and HC treatments across all irradiances above the light compensation point (P<0.001); however, the LC treatment was not significantly different between species across any irradiance. In the CO_2 -response curves, for both species, rates of $^{13}CO_2^*$ entering the leaf were highest when the rate of transpiration and stomatal conductance were highest (Fig. 5b, d). In *A. hypochondriacus*, the amount of $^{13}CO_2^*$ entering the leaf was significantly different in the LC treatment compared to the MC and HC treatments across all intercellular $[CO_2]$ (P<0.05) (Fig. 5b). In *B. napus*, the amount of $^{13}CO_2^*$ entering the leaf in the LC treatment was significantly different from the MC and HC treatments across all $[CO_2]$ (P<0.001). The amount of $^{13}CO_2^*$ entering the leaf was significantly different between species in the HC treatment across all $[CO_2]$ (P<0.05) but there were no significant differences between species in the LC treatment across any $[CO_2]$. # Rates of carbon fixation in the light Rates of carbon fixation in the light increased with increasing irradiance and [$^{13}CO_{2}^{*}$] (Fig. 6a). Rates of carbon fixation were significantly different between the LC and HC treatments across all irradiances (P<0.001) and all treatments were significantly different when irradiance was greater than 1000 μ mol quanta m $^{-2}$ s $^{-1}$ (P<0.001). In the CO₂-response curves, rates of $^{13}A_{obs}$ increased with increasing intercellular [CO₂] in the KCl treatment (Fig. 6b); rates of $^{13}A_{obs}$ were ~1.1% the rate of $^{12}A_{obs}$. However, rates of carbon fixation in the light peaked at an intercellular [CO₂] of ~50 μ mol mol⁻¹ (Fig. 6b). Rates of carbon fixation in the light were significantly different across [CO₂] (P<0.05) and among [$^{13}CO_2^*$] (P<0.001). The highest percent contribution of $^{13}CO_2^*$ to total assimilation was 6% which occurred under low irradiance and decreased with increasing irradiance and saturated at This article is protected by copyright. All rights reserved. ~2.2% in *A. hypochondriacus* (Fig. S1). In *B. napus*, but the highest percentage of $^{13}CO_2^*$ was only 3% but under saturating irradiance was ~1.8%. However, the percent of $^{13}CO_2^*$ consumed by enzymes in the light was three times higher in *A. hypochondriacus* compared to *B. napus* across all irradiances (Fig. S2). ### **DISCUSSION** # Fate of xylem-transported CO2 in the dark Our method, of providing a cut leaf of the Kranz-type C_4 species, *Amaranthus hypochondriacus*, a solution of $[^{13}CO_2^*]$ (the sum of $[CO_2]_{aq}$, $[H_2CO_2]$, $[HCO_3^-]$ and $[CO_3^{2-}]$) and placing the leaf in a custom LI-6400 leaf chamber coupled to a tunable diode laser absorption spectroscope (TDL), allowed us to measure the rate of $^{13}CO_2$ efflux out of the leaf in the dark among all $[^{13}CO_2^*]$. As with C_3 species (Stutz *et al.*, 2017), rates of $^{13}C_{efflux}$ in *A. hypochondriacus*, were dependent upon the rate of transpiration and the $[^{13}CO_2^*]$, with the highest rates of $^{13}C_{efflux}$ occurring when both the rate of transpiration and $[^{13}CO_2^*]$ were high (Fig. 1b). However, compared to the herbaceous C_3 species, *Brassica napus* (Stutz *et al.*, 2017), rates of $^{13}C_{efflux}$ were ~2 times lower in *A. hypochondriacus* at the same rate of transpiration in the high-carbon (HC) treatment (Fig. 1b, c). The highest percentage of xylem-transported CO_2 that exited the cut leaf of A. *hypochondriacus* as CO_2 was 30%, which occurred in the medium-carbon (MC) and HC treatments (Fig. 3a). However, this percentage is much lower than what is observed in C_3 species, 75% in B. *napus* (Fig. 3b) and 80% in P. *deltoides* (Stringer & Kimmerer, 1993; Stutz *et al.*, 2017). Due to the low efflux of xylem-transported CO_2 from A. *hypochondriacus* leaves, the rate of xylem-transported CO_2 retention was higher in A. *hypochondriacus* (~0.25 μ mol CO_2 m⁻² s⁻¹) compared to B. *napus* (~0.08 μ mol CO_2 m⁻² s⁻¹), in the first 90 minutes after turning off the light, indicating one of several possibilities: 1) lower rates of transpiration, caused by lower stomatal conductance (g_s) in A. *hypochondriacus* allowed for more time for carboxylases to capture the inorganic carbon, 2) slow deactivation of a larger pool of PEPC in A. *hypochondriacus*, or 3) Kranz anatomy providing a physical barrier to xylem-transported CO_2 exiting the leaf. Stomatal conductance before cutting the leaf was $^{\circ}0.5 \text{ mol H}_2O \text{ m}^{-2} \text{ s}^{-1} \text{ for both}$ species. However, after turning off the light in *A. hypochondriacus* g_s declined to $^{\circ}0.008 \text{ mol H}_2O \text{ m}^{-2} \text{ s}^{-1}$ within an hour (data not shown) while g_s in *B. napus* declined to $^{\circ}0.08 \text{ mol H}_2O \text{ m}^{-2} \text{ s}^{-1}$. Night g_s was higher in C_3 species (0.1 mmol $H_2O \text{ m}^{-2} \text{ s}^{-1}$) compared to Kranz-type C_4 *Atriplex* shrubs and a Kranz-type C_4 grass ($^{\circ}0.03 \text{ mmol H}_2O \text{ m}^{-2} \text{ s}^{-1}$) in warm deserts (Snyder *et al.*, 2003). The dark g_s we observed in *A. hypochondriacus* was considerably lower than g_s on attached leaves from closely related C_4 species. It is likely that the low g_s observed in our experiment is the result of cutting the leaf. Recent work shows night g_s and rates of dark transpiration are higher than previously thought in both C_3 and C_4 species (Caird *et al.*, 2007; Resco de Dios *et al.*, 2015). Despite lower g_s , a higher vapor pressure difference (VPD) kept transpiration rates for *A. hypochondriacus* similar to those for *B. napus*. However, $^{13}C_{\text{efflux}}$ was lower in *A. hypochondriacus* compared to *B. napus* making it unlikely that lower stomatal conductance caused the difference in $^{13}C_{\text{efflux}}$, and increasing the likelihood that slower carboxylase deactivation in the dark might be responsible for the difference in $^{13}C_{\text{efflux}}$ between *A. hypochondriacus* and *B. napus*. Once carboxylases are deactivated in the dark, 90 to 120 minutes in C_4 species and 30 to 60 minutes in C_3 species (Rajagopalan *et al.*, 1993), the consumption of $^{13}CO_2^*$ (the sum of $[CO_2]_{aq}$, $[H_2CO_3]$, $[HCO_3^-]$ and $[CO_3^{2-}]$) should be at a minimum. Consistent with that idea, we found that when the light has been off for at least 120 minutes, the consumption of $^{13}CO_2^*$ in the dark was similar between *B. napus* (~0.07 µmol CO_2 m⁻² s⁻¹) and *A. hypochondriacus* (~0.07 µmol CO_2 m⁻² s⁻¹); despite *in vitro* PEPC activities being more than 30 times higher in the light in C_4 species compared to C_3 species (Alonso-Cantabrana & von Caemmerer, 2016). However, there was no increase in $^{13}C_{efflux}$ between 30 and 120 min in the dark that one might expect after the carboxylases deactivate, but the potential signal was low since transpiration was low at that time. The vascular bundles of Kranz-type C_4 plants are tightly surrounded by bundle-sheath cells which in turn are tightly surrounded by mesophyll cells. For $^{13}CO_2^*$ to exit the leaf of *A. hypochondriacus* it must pass through the layer of bundle-sheath followed by mesophyll cells (Fig. 7). However, in C_3 species, the leaf is differentiated into an upper palisade and loosely compact spongy mesophyll cells with a high surface area exposed to the intercellular airspaces (Busch *et al.*, 2012; Giuliani *et al.*, 2013), as well as non- photosynthetic bundle-sheath cells surrounding the vascular bundle (Holaday *et al.*, 1984). Therefore, Kranz anatomy likely provides a physical barrier that limits the efflux of xylem-transported CO_2 out of *A. hypochondriacus* in the dark. Consistent with that, we found that following 120 minutes of dark accumulation and under similar rates of transpiration the rate of $^{13}C_{efflux}$ is at least three times greater in *B. napus* compared to *A. hypochondriacs* (Fig. 1c) across the same transpiration. # Use of xylem-transported CO₂ in the light Our method, of placing a cut Kranz-type C_4 leaf in a solution of $[^{13}CO_2^*]$ allowed us to estimate how much $^{13}CO_2^*$ was used for carbon fixation in the light. Although we believe the $^{13}CO_2^*$ was captured by Rubisco and PEPC for photosynthesis, it could have been used for non-photosynthetic reactions (DiMario *et al.*, 2018) and our methods did not distinguish between those fates. Photosynthetic discrimination ($\Delta^{13}C$) confirms that little if any xylemtransported CO_2 exited the leaf in the low-carbon (LC) treatment (Fig. 4a, b); however, some xylem-transported CO_2 exited the leaf in the MC and HC treatments as evidenced by the high $\Delta^{13}C$ values observed in both the light- and CO_2 -response curves (Fig. 4c, d). As expected, the rate of $^{13}\text{CO}_2^*$ entering the leaf was dependent upon the rate of transpiration and $[^{13}\text{CO}_2^*]$ for both species (Fig. 5). Rates of transpiration were higher in *B. napus* compared to *A. hypochondriacus* which led to higher rates of $^{13}\text{CO}_2^*$ entering *B. napus* leaves (Fig. 5). However, we detected little xylem-transported CO_2 exiting the leaf of *A. hypochondriacus* in the light. Therefore, the capacity for *A. hypochondriacus* to use xylem-transported CO_2 is greater than the capacity for C_3 plants, either via photosynthesis or other enzymatic processes that consume CO_2 in the light (see Table 2 in DiMario *et al.*, 2018). Concentrations of CO_2^* are high in tree stems (Teskey *et al.*, 2008); yet prior work shows little xylem-transported CO_2 is used for photosynthesis compared to what is available (Bloemen *et al.*, 2013a). However, this was not the case for Kranz-type C_4 plants, especially at lower $^{13}\text{CO}_2^*$ concentrations. Across all treatments, in the light, little xylem-transported CO_2 exited the leaves, indicating that nearly all $^{13}CO_2^{*}$ was consumed. $^{13}CO_2^{*}$ exiting the vascular bundles of Kranz- type C₄ leaves may exit the leaf by (Fig. 7): 1) traveling apoplastically, along the cells walls of bundle-sheath (BSC) and/or mesophyll cells (MC), 2) traveling symplastically, through the interior of BSCs and/or MCs, or 3) traveling in gas phase (Buckley, 2015). The amount of diffusion through each of these pathways is unclear, owing in part to a lack of knowledge about aquaporins and the location of carbonic anhydrases (CA). Aquaporins allow water to quickly and easily pass through membranes but also facilitate the passage of CO2 and other small uncharged molecules (Uehlein et al., 2003; Flexas et al., 2006; Maurel et al., 2008; Sade et al., 2013), while CAs will facilitate equilibrium between pools of inorganic carbon. CA has not been firmly localized to the apoplast in higher plants, though it has been isolated in the cell walls of Chlamydomonas reinhardtii (Moroney et al., 2011), and is known to associate with the plasma membrane (DiMario et al. 2017). If apoplastic CAs are discovered in the future, it will suggest that significant apoplastic transport of CO₂* is possible, otherwise, it is likely that most transport is via symplastic routes. In C₄ plants CA activities are ~4 times higher in MCs than BSCs (DiMario et al., 2017). 13CO₂* that diffuses past the BSCs to the MCs may be kept at equilibrium by CA, maintaining the supply of CO₂ for Rubisco. ¹³CO₂* that diffuses past the BSCs to the MCs could further be fixed by PEPC and returned to the BSC as a C₄ acid (Fig. 7). Dissolved xylem-transported CO₂* traveling with water symplastically through the cells would be captured by photosynthetic cells but not be detected with our TDL technique. Alternatively, if dissolved ¹³CO₂ ^{*} travels apoplastically through the leaf or via the gas phase, it will enter the intercellular air space, where it can be captured by PEPC or exit the leaf as CO2. Our method with the TDL does not allow us to differentiate possible paths for ¹³CO₂* traveling through a leaf or if photosynthetic enzymes or other enzymes consumed the ¹³CO₂*. However, with our method we know how much $^{13}\mathrm{CO_2}^*$ enters a leaf and how much $^{13}\mathrm{CO_2}$ exits a leaf. # Significance for the evolution to C_4 photosynthesis? C_4 photosynthesis is spread across 19 plants families reflecting 61 independent origins (Sage, 2016) in both eudicots and monocots. C_4 plants have a separation of C_3 and C_4 enzymes, which occurs in one of two ways: 1) Kranz-type C_4 plants that separate Rubisco and PEPC into two distinct cells, bundle-sheath and mesophyll respectively (Edwards *et al.*, 2004) or 2) single-cell C_4 plants that use a single-cell with partitions for C_3 and C_4 enzymes (Voznesenskaya *et al.*, 2001; Edwards *et al.*, 2004). Compared to C_3 species, intermediate C_3 - C_4 and Kranz-type C_4 plants have increased vein densities, reduction in intercellular airspaces, and enhancement of bundle-sheath organelles (Monson, 1999; Sage, 2004). While increasing vein densities may only increase structural integrity or enhance leaf water status (Sage, 2004) it may also allow xylem-transported CO_2 to be utilized for photosynthesis by reducing the distance between vascular bundles transporting xylem-transported CO_2 and photosynthetic cells. Kranz syndrome is characterized by Kranz cells with numerous chloroplasts, thick outer walls, tight packing around the vascular bundles and limited exposure to intercellular air spaces (Sage *et al.*, 2014). Tight packing of cells around the vascular bundles will limit the amount of xylem-transported CO₂ that diffuses into the intercellular airspace and eventually out of the leaf. Additionally, tightly packed cells around the vascular bundle will provide increased hydraulic continuity and cavitation repair in the leaf, along with other benefits (see Griffiths *et al.*, 2013). Thus a well-developed system for capturing xylem-transported CO₂ would also provide the hydraulic benefits which allow Kranz-type C₄ plants to survive in environments with higher evaporative demand without suffering the consequences of hydraulic failure (Osborne & Sack, 2012). Furthermore, the stems of herbaceous C₃ plants have been hypothesized to exhibit an analogous process to Kranz anatomy where malate, dissolved in xylem sap, is taken up by the CO₂ limited cells surrounding the vasculature in the stems and then delivered as malate to photosynthetic cells (Hibberd & Quick, 2002). Higher evaporative demand in the leaf will increase the vasculature of the leaf to decrease embolisms but will also allow cells surrounding the vascular bundles access to carbon dissolved in xylem water in a process similar to the transfer of malate from MC to BSC in C₄ plants. The coupling of increased veins to reduce embolism along with the supply of inorganic carbon from vascular bundles may have allowed for the multiple independent origins of C₄ photosynthesis proposed by Hibberd & Quick (2002). We observed little xylem-transported CO_2 exiting the leaves of the Kranz-type C_4 species compared to C_3 species indicating that Kranz-type C_4 plants have a higher capacity to consume xylem-transported CO_2 compared to C_3 species. Kranz anatomy is likely the cause for the difference in $^{13}C_{efflux}$ in the dark and $^{13}C_{light\,efflux}$ in the light between C_3 and C_4 plants. We believe that Kranz anatomy effectively limits xylem-transported CO_2 from exiting leaves and thus allowed *A. hypochondriacus* to use nearly 75% of the $^{13}CO_2^*$ compared to *B. napus* which used only 30% of the $^{13}CO_2^*$ (Fig. S2). However, due to differences in total assimilation the contribution of $^{13}CO_2^*$ to total assimilation was similar between the two species (Fig. S1). Thus, the ability of Kranz anatomy to capture xylem-transported CO_2 provides Kranz-type C_4 plants another way to increase their carbon use efficiency over their C_3 counterparts. ### **CONCLUSION** Our technique, using a LI-6400 coupled to a TDL, allowed us to measure the efflux of xylem-transported CO₂ out of cut leaves in the Kranz-type C₄ species, Amaranthus hypochondriacus in the dark. Rates of ¹³C_{efflux} in the dark increased with increasing rates of transpiration and [13CO₂*]. However, when compared to a herbaceous C₃ species, *Brassica* napus, at the same rate of transpiration and $[^{13}CO_2^*]$, rates of $^{13}C_{efflux}$ were lower in A. hypochondriacus indicating that leaf anatomy or enzymatic activity in the dark decreased the flux of xylem-transported CO₂ out of the leaf. In the light, the amount of xylemtransported CO₂ entering the leaf was dependent upon the rate of transpiration and $\left[^{13}\text{CO}_{2}\right.^{*}$]. We were not able to detect any xylem-transported CO_{2} exiting the leaf in the LC treatment using photosynthetic discrimination, but in the MC and HC treatments, photosynthetic discrimination showed that xylem-transported CO₂ exited the leaf. However, the low efflux rate of xylem-transported CO₂ in the light indicates that A. hypochondriacus is likely able to recapture and use nearly all xylem-transported CO₂ for photosynthesis, achieving rates of carbon capture that are up to 6% of photosynthesis, similar to C₃ plants at equivalent transpiration rates. However, A. hypochondriacus was able to use up to 75% of xylem-transported CO₂ supplied while B. napus only used up to 25% of the xylem-transported CO₂. Compared to the C₃ species, the amount of xylem-transported CO₂ exiting the cut leaves of A. hypochondriacus was small, indicating that Kranz-type C₄ species are able to utilize more xylem-transported CO₂ than their C₃ counterparts. Kranz anatomy is another way C_4 plants are able to increase their carbon use efficiency over C_3 plants. ### **ACKNOWLEDGMENTS** Wes Noe, Andrea McArdle, Joy Avritt and Lindsey Kaufman for greenhouse and plant maintenance. Dr. Chris Harvey for carefully reading the discussion. Claire Benjamin from RIPE (Realizing increased photosynthetic efficiency for sustainable increases in crop yield—University of Illinois) for designing and making figure 7. This research was supported in part by instrumentation obtained (TDL) through NSF funding (IOS 0719118). Additional support was provided by the University of New Mexico and the NSF EPSCoR Program under Award #IIA-1301346 (New Mexico). Source for the *B. napus* seeds (J. Chris Pires, University of Missouri-Columbia). Support for SSS was provided by the Dr. Harry Wayne Springfield Fellowship through the Department of Biology, University of New Mexico. Any opinions, finding, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or the US NIH. ### **AUTHOR CONTRIBUTIONS** S.S.S. performed experiments and analyzed data. D.T.H. provided a conceptual framework. S.S.S. and D.T.H. wrote the manuscript. ### REFERENCES **Alonso-Cantabrana H, von Caemmerer S. 2016.** Carbon isotope discrimination as a diagnostic tool for C₄ photosynthesis in C₃-C₄ intermediate species. *Journal of Experimental Botany* **67:** 3109-3121. Barbour MM, McDowell NG, Tcherkez G, Bickford CP, Hanson DT. 2007. A new measurement technique reveals rapid post-illumination changes in the carbon isotope composition of leaf-respired CO₂. *Plant, Cell & Environment* 30: 469-482. Bates, DM, Maechler, M., Bolker, B. 2012. Lme4: Linear mixed-effects models using S4 classes. R package version 0.999999-0. **Bloemen J, McGuire MA, Aubrey DP, Teskey RO, Steppe K. 2013a.** Transport of root-respired CO₂ via the transpiration stream affects aboveground carbon assimilation and CO₂ efflux in trees. *New Phytologist* **197**: 555-565. Bloemen J, McGuire MA, Aubrey DP, Teskey RO, Steppe K. 2013b. Assimilation of xylemtransported CO₂ is dependent on transpiration rate but small relative to atmospheric fixation. *Journal of Experimental Botany* 64: 2129-2138. Bloemen J, Bauweraerts I, De Vos F, Vanhove C, Vandenberghe S, Boeckx P, Steppe K. 2015. Fate of xylem-transported ¹¹C- and ¹³C-labeled CO₂ in leaves of poplar. *Physiologia Plantarum* 153: 555-564. **Buckley TN. 2015.** The contributions of apoplastic, symplastic and gas phase pathways for water transport outside the bundle sheath in leaves. *Plant, Cell & Environment* **38**: 7-22. **Busch FA, Sage TL, Cousins AB, Sage RF. 2012.** C₃ plants enhance rates of photosynthesis by reassimilating photorespired and respired CO₂. *Plant, Cell & Environment*: **36**: 200-212. **von Caemmerer S, Furbank RT. 2003.** The C₄ pathway: an efficient CO₂ pump. *Photosynthesis Research* **77**: 191-207. Caird MA, Richards JH, Donovan LA. 2007. Nighttime stomatal conductance and transpiration in C_3 and C_4 plants. *Plant Physiology* **143**: 4-10. **DiMario RJ, Clayton H, Mukherjee A, Ludwig M, Moroney JV. 2017.** Plant carbonic anhydrases: structures, locations, evolution, and physiological roles. *Molecular Plant* **10**: 30-46. **DiMario RJ, Machingura MC, Waldrop GL, Moroney JV. 2018.** The many types of carbonic anhydrases in photosynthetic organisms. *Plant Science* **268**: 11-17. **Edwards GE, Franceschi VR, Voznesenskaya EV. 2004.** Single cell C₄ photosynthesis versus the dual-cell (Kranz) paradigm. *Annual Review of Plant Biology* **55**: 173-196. **Farquhar GD. 1983.** On the nature of carbon isotope discrimination in C_4 species. *Australian Journal of Plant Physiology* **10**: 205-226. Flexas J, Ribas-Carbo M, Hanson DT, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R. 2006. Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO₂ in vivo. Plant Journal 48: 427-439. Giuliani R, Koteyeva N, Voznesenskaya E, Evans MA, Cousins AB, Edwards GE. 2013. Coordination of leaf photosynthesis, transpiration, and structural traits in rice and wild relatives. *Plant Physiology* **162**: 1632-1651. **Griffis T, Baker J, Sargent S, Tanner B, Zhang J. 2004.** Measuring field-scale isotopic fluxes with tunable diode laser absorption spectroscopy and micrometeorological techniques. *Agricultural and Forest Meteorology* **124**: 15-29. Griffiths H, Weller G, Toy LFM, Dennis RJ. 2013. You're so vein: bundle sheath physiology, phylogeny and evolution in C₃ and C₄ plants. *Plant, Cell & Environment* 36: 249-261. **Hatch MD. 1987**. C₄ photosynthesis—a unique blend of modified biochemistry, anatomy and ultrastructure. *Biochimica et Biophysica Acta* **895**: 81-106. **Hatch MD, Agostino A, Jenkins CLD. 1995.** Measurement of the leakage of CO₂ from bundle-sheath cells of leaves during C₄ photosynthesis. *Plant Physiology* **108**: 173-181. **Hatch MD, Slack CR, Johnson HS. 1967.** Further studies on a new pathway of photosynthetic carbon dioxide fixation in sugarcane and its occurrence in other plant species. *Biochemical Journal* **102**: 417-422. **Hibberd JM, Quick WP. 2002**. Characteristics of C_4 photosynthesis in stems and petioles of C_3 flowering plants. *Nature* **415**: 451-454. **Holaday AS, Lee KW, Chollet R. 1984.** C_3 - C_4 intermediate species in the genus *Flaveria*: leaf anatomy, ultrastructure, and the effect of O_2 on the CO_2 compensation concentration. *Planta* **160**: 25-32. **Kanai R, Edwards GE. 1999.** The biochemistry of C₄ photosynthesis in: Sage RF, Monson RK, eds. C₄ plant biology. London: Academic Press, 49-87. **Maurel C, Verdoueq L, Luu DT, Santoni V. 2008.** Plant aquaporins: membrane channels with multiple integrated functions. *Annual Review of Plant Biology* **59**: 595-624. McGuire MA, Marshall JD, Teskey RO. 2009. Assimilation of xylem-transported ¹³C-labelled CO₂ in leaves and branches of sycamore (*Platanus occidentalis* L.). *Journal of Experimental Botany* **60**: 3809-3817. **Monson RK. 1999.** The origins of C_4 genes and evolutionary pattern in the C_4 metabolic phenotype. In Sage RF, Monson RK, eds. C_4 plant biology. San Diego, CA, USA: Academic Press, 377-410. **Moroney JV, Bartlett SG, Samuelsson G. 2001.** Carbonic anhydrases in plants and algae. *Plant, Cell & Environment* **24:** 141-153. Osborne CP, Sack L. 2012. Evolution of C₄ plants: a new hypothesis for an interaction of CO₂ and water relations mediated by plant hydraulics. *Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences* 367: 583-600. **R Core Development Team. 2012.** R: A language and environment for statistical computing. Vienna, Austria: Ro Foundation for Statistical Computing. ISBN 3-900051-0700. Available at: http://www.R-project.org (Accessed 19 August 2012). **Rajagopalan AV, Devi MT, Raghavendra AS. 1993.** Patterns of phosphoenolpyruvate carboxylase activity and cytosolic pH during light activation and dark deactivation in C_3 and C_4 plants. *Photosynthesis Research* **38**: 51-60. **Resco de Dios V, Roy J, Ferrio JP, Alday JG, Landais D, Milcu A, Gessler A. 2015.** Processes driving nocturnal transpiration and implications for estimating land evapotranspiration. *Scientific Reports* **5**: 10975. Sade N, Galle A, Flexas J, Lerner S, Peleg G, Yaaran A, Moshelion M. 2013. Differential tissue-specific expression of NtAQP1 in *Arabidopsis thaliana* reveals a role for this protein in stomatal and mesophyll conductance of CO₂ under standard and salt-stress conditions. *Planta* 239: 357-366. **Sage RF. 2004.** The evolution of C₄ photosynthesis. *New Phytologist* **161**: 341-370. **Sage RF. 2016.** A portrait of the C₄ photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and Hall of Fame. *Journal of Experimental Botany* **67**: 4039-4056. **Sage RF, Khoshravesh R, Sage TL. 2014**. From proto-Kranz to C₄ Kranz: building the bridge to C₄ photosynthesis. *Journal of Experimental Botany* **66**: 3341-3356. **Snyder KA, Richards JH, Donovan LA. 2003.** Night-time conductance in C_3 and C_4 species: do plants lose water at night? *Journal of Experimental Botany* **54**: 861-865. **Stringer JW, Kimmerer TW. 1993.** Refixation of xylem sap CO₂ in *Populus deltoides*. *Physiologia Plantarum* **89**: 243-251. **Stutz SS, Anderson J, Zulick R, Hanson DT. 2017.** Inside out: efflux of carbon dioxide from leaves represents more than leaf metabolism. *Journal of Experimental Botany* **68**: 2849-2857. **Stutz SS, Hanson DT. 2019.** Contribution and consequences of xylem-transported CO₂ assimilation for C₃ plants. *New Phytologist* accepted 3 May 2019. **Teskey RO, McGuire MA. 2002.** Carbon dioxide transport in xylem causes errors in estimation of rates of respiration in stems and branches of trees. *Plant, Cell and Environment* **25:** 1571-1577. **Teskey RO, Saveyn A, Steppe K, McGuire MA. 2008.** Origin, fate and significance of CO₂ in tree stems. *New Phytologist* **177**: 17-32. **Ubierna N, Sun W, Cousins AB. 2011.** The efficiency of C₄ photosynthesis under low light conditions: assumptions and calculations with CO₂ isotope discrimination. *Journal of Experimental Botany* **62**: 3119-3134. **Uehlein, Lovisolo C, Siefritz F, Kaldenhoff R. 2003.** The tobacco aquaporin NtAQP1 is a membrane CO₂ pore with physiological functions. *Nature* **425**: 734-737. **Voznesenskaya EV, Franceschi VR, Kiirats O, Freitag H, Edwards GE. 2001.** Kranz anatomy is not essential for terrestrial C₄ plant photosynthesis. *Nature* **414**: 543-546. # **Supporting information (SI)** **Table S1** Mean pH and standard deviation (±1 SD) for the dark, light- and CO₂-responses in *Amaranthus hypochondriacus*. **Table S2** Mean pH and standard deviation (±1 SD) for the dark, light- and CO₂-responses in *Brassica napus*. **Fig. S1** The contribution of xylem-transported CO_2 assimilation to total assimilation across a light-response curve from the HC treatment for *A. hypochondriacus* and *B. napus*. **Fig. S2** The percent of $^{13}CO_2^*$ consumed by enzymes in the light across a light-response curve from the HC treatment for *A. hypochondriacus* and *B. napus*. ### **FIGURES** Fig. 1 (a) Transpiration dependence of leaf respiration ($^{12}C_{RL}$) for three [$^{13}CO_2^*$]—light gray squares represents the low-carbon (LC) treatment (y=0.1413x + 1.234, R²=0.1337), dark gray squares represent the medium-carbon (MC) treatment (y=0.2046x + 1.215, R^2 =0.3945) and filled squares represent the high-carbon (HC) treatment (y=0.3013x + 1.048, R^2 =0.7326). (b) Transpiration dependence of ¹³C_{efflux} in the dark for three [¹³CO₂*] light gray circles represent the LC (y=0.002446x + 0.01554, R^2 =0.2740), dark gray circles represent the MC (y=0.04432x + 0.001913, R²=0.9019) and filled circles represent the HC (y=0.06925x -0.007001, R^2 =0.9661). (c) Transpiration dependence of $^{13}C_{efflux}$ in the HC treatment from *B. napus* (dark green circles) and A. hypochondriacus (black circles) from the HC treatment. Measurements were made on excised leaves of A. hypochondriacus or B. napus placed in one of the three [13CO₂*] solutions. The low-carbon (LC) was 1.19 mmol l⁻¹, medium-carbon (MC) was 5.95 mmol l⁻¹ and high-carbon (HC) was 11.9 mmol l⁻¹. Measurements represent averages and ±1 standard deviation (SD) of five replicates for A. hypochondriacus and four replicates for B. napus. Transpiration was averaged over 0.1 mmol H₂O m⁻² s⁻¹ increments and represent rates of transpiration and ¹³C_{efflux} at least 45 minutes after the light was turned off. [13CO₂*] is the sum of the concentrations of all species of dissolved inorganic carbon in the xylem ([CO₂]_{aq}, [H₂CO₂], [HCO₃⁻] and [CO₃²-]). B. napus data modified from Stutz et al. (2017). **Fig. 2** Response of gross (a) efflux of xylem-transported CO_2 , $^{13}C_{efflux}$ (circles) and (b) leaf respiration, $^{12}C_{RL}$ (squares) in *A. hypochondriacus* at a transpiration rate of 0.75 mmol H₂O m⁻² s⁻¹ for each [$^{13}CO_2^*$]. Measurements were made on cut leaves of *A. hypochondriacus* placed in one of three [$^{13}CO_2^*$] solutions—LC, MC, and HC. Measurements represent averages and ±1 standard deviation (SD) of five replicates for each [$^{13}CO_2^*$]. The low-carbon (LC) was 1.19 mmol I⁻¹, medium-carbon (MC) was 5.95 mmol I⁻¹ and high-carbon (HC) was 11.9 mmol I⁻¹. [$^{13}CO_2^*$] is the sum of the concentrations of all species of dissolved inorganic carbon in the xylem ([CO_2]_{aq}, [CO_2], [CO_2] and [CO_2] and [CO_2]. **Fig. 3** The percentage of gross xylem-transported $^{13}\text{CO}_2$ exiting the leaf in the transpiration stream in (a) *A. hypochondriacus* and (b) *Brassica napus* across three [$^{13}\text{CO}_2^*$] averaged over the first 90 minutes after turning off the light. Estimated rates xylem-transported $^{13}\text{CO}_2$ consumption in cut leaves of (c) *A. hypochondriacus* and (d) *B. napus* across three [$^{13}\text{CO}_2^*$] averaged over the first 90 minutes after turning off the light. Measurements represent averages and ± 1 standard deviation (SD) of five replicates for *A. hypochondriacus* and four replicates for *B. napus* made on cut leaves under the following concentrations: LC, MC, and HC. The low-carbon (LC) was $1.19 \text{ mmol } \Gamma^1$, medium-carbon (MC) was $5.95 \text{ mmol } \Gamma^1$ and high-carbon (HC) was $11.9 \text{ mmol } \Gamma^1$. *B. napus* data modified from Stutz *et al.* (2017). [$^{13}\text{CO}_2^*$] is the sum of the concentrations of all species of dissolved inorganic carbon in the xylem ([CO₂]_{aq}, [H₂CO₂], [HCO₃⁻] and [CO₃²⁻]). **Fig. 4** Photosynthetic discrimination (Δ^{13} C) across (a,c) light- and (b, d) CO₂-response curves in *Amaranthus hypochondriacus*. Light-response curves (a) KCl control (open diamonds) and LC (light gray diamonds) and (c) MC (dark gray diamonds) and HC (filled diamonds) treatments. CO₂-response curves (b) KCl control (open diamonds) and LC (light gray diamonds) and (d) MC (dark gray diamonds) and HC (filled diamonds) treatments. Measurements represent means and ± 1 standard deviation (SD) of five replicates for each treatment on cut leaves of *A. hypochondriacus*. The low-carbon (LC) was 1.19 mmol l⁻¹, medium-carbon (MC) was 5.95 mmol l⁻¹ and high-carbon (HC) was 11.9 mmol l⁻¹. **Fig. 5** Calculated rates of $^{13}\text{CO}_2^*$ entering cut leaves of (a, b) the C₄ species *A*. *hypochondriacus* and (c, d) the C₃ species *B. napus* in (a, c) light- and (b, d) CO₂-response curves. LC (light gray triangles), MC (dark gray triangles) and HC (closed triangles) for both species. Measurements represent means and ±1 standard deviation (SD) of five replicates for each treatment in *A. hypochondriacus* and *B. napus*. The low-carbon (LC) was 1.19 mmol Γ^{-1} , medium-carbon (MC) was 5.95 mmol Γ^{-1} and high-carbon (HC) was 11.9 mmol Γ^{-1} . Γ^{-1} is the sum of all species of dissolved inorganic carbon in the xylem ([CO₂]_{aq}, [H₂CO₂], [HCO₃⁻¹]). Fig. 6 Light- and CO₂-response curves for rates of photosynthesis with (a, b) ¹³Carbon (¹³A_x— photosynthesis using xylem-transported CO₂, or background rates of ¹³A_{obs} in KCl treatment) and (c, d) ¹²Carbon (¹²A_{obs}—photosynthesis using CO₂ derived from the atmosphere). ¹³A_x in *A. hypochondriacus* KCl (open circles), LC (light gray circles), MC (dark gray circles) and HC (closed circles) and ¹²A_{obs} for *A. hypochondriacus*, for KCl (open squares), LC (light gray squares), MC (dark gray squares) and HC (closed squares). Measurements represent means and ±1 standard deviation (SD) of five replicates for each treatment. The low-carbon (LC) was 1.19 mmol I⁻¹, medium-carbon (MC) was 5.95 mmol I⁻¹ and high-carbon (HC) was 11.9 mmol I⁻¹. **Fig. 7.** The fate of xylem-transported CO_2 in Kranz-type C_4 plants. Inorganic carbon ($[CO_2^*]$, the sum of $[CO_2]_{aq}$, $[H_2CO_3]$, $[HCO_3^-]$ and $[CO_3^{2-}]$) dissolved in xylem water (blue on the figure) travels from the roots to the leaves of the plant likely interacting with carbonic anhydrase in multiple locations in leaves, keeping each species in equilibrium. In the dark, xylem-transported CO_2 can move apoplastically along the cell walls of the bundle-sheath and mesophyll cells before entering the substomatal cavity and diffusing out of the leaf as CO_2 (red arrow). The transpiration stream may also move xylem-transported CO_2 symplastically through the bundle-sheath and mesophyll cells and be consumed by non-photosynthetic processes occurring in the dark (pink arrows). In the light, xylem-transported CO_2 can also enter cells bundle sheath cells and be captured by Rubisco for photosynthesis, or enter the mesophyll cells and be captured by PEPC before being transported to Rubisco for photosynthesis. As in the dark, xylem-transported CO_2 can also continue through the apoplast to the substomatal cavity and diffuse out of the leaf.